Linear Approximation of Semi-algebraic Spatial Databases Using Transitive Closure Logic, in Arbitrary Dimension

نویسنده

  • Floris Geerts
چکیده

We consider n-dimensional semi-algebraic spatial databases. We compute in first-order logic extended with a transitive closure operator, a linear spatial database which characterizes the semi-algebraic spatial database up to a homeomorphism. In this way, we generalize our earlier results to semi-algebraic spatial databases in arbitrary dimensions, our earlier results being true for only two dimensions. Consequently, we can prove that first-order logic with a transitive closure operator extended with stop conditions, can express all Boolean topological queries on semi-algebraic spatial databases of arbitrary dimension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearization and Completeness Results for Terminating Transitive Closure Queries on Spatial Databases

We study queries to spatial databases, where spatial data are modelled as semialgebraic sets, using the relational calculus with polynomial inequalities as a basic query language. We work with the extension of the relational calculus with terminating transitive closures. The main result is that this language can express the linearization of semi-algebraic databases. We also show that the sublan...

متن کامل

On the decidability of termination of query evaluation in transitive-closure logics for polynomial constraint databases

The formalism of constraint databases, in which possibly infinite data sets are described by Boolean combinations of polynomial inequality and equality constraints, has its main application area in spatial databases. The standard query language for polynomial constraint databases is first-order logic over the reals. Because of the limited expressive power of this logic with respect to queries t...

متن کامل

Properties of Binary Transitive Closure Logics over Trees

Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate logic by a transitive closure operator of binary relations. Deterministic binary transitive closure logic (FOD∗) is the restriction of FO∗ to deterministic transitive closures. It is known that these logics are more powerful than FO on arbitrary structures and on finite ordered trees. It is also known that...

متن کامل

On the Power of Languages for the Manipulation of Complex Objects

Various models and languages for describing and manipulating hierarchically structured data have been proposed. Algebraic, calculus-based and logic-programming oriented languages have all been considered. This paper presents a general model for complex objects, and languages for it based on the three paradigms. The algebraic language generalizes those presented in the literature; it is shown to...

متن کامل

Properties of Binary Transitive Closure Logic over Trees

Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate logic by a transitive closure operator of binary relations. It is known that this logic is more powerful than FO on arbitrary structures and on finite ordered trees. It is also known that it is at most as powerful as monadic second-order logic (MSO) on arbitrary structures and on finite trees. We will stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001